ELASTIC RAIL FASTENING PLATES WITH “SKL” RAIL CLAMPS

Mounting on concrete sleepers in ballast track

Description
Ribbed plates with “SkI” rail clamps, intermediate rail plates and plate pads are used to attach turnout parts on concrete sleepers. The rail clamps ensure a permanent resilient tension. The creep resistance and twisting resistance achieved meet the requirements placed on a continuously welded track. The plates are mounted on the sleepers via 4 sleeper screws and dualspring washers.

Technical description
» meets EN13481 standard for fastening categories A, B, C, D, E
» Pre-assembly possible
» Spring force about 12 kN/clamp

Added value
» continuously elastic tensioning
» good creep and twisting resistance for use in continuously welded track
» high tipping safety due to the middle loop
» long service life
» little space required
» plate fastening can be selected, e.g.: Sleeper screws, push-through bolt connection, angle guide fastening
» elasticity of the intermediate plate below the rail can be selected from rigid to soft
» delivered with or without corrosion protection according to environmental conditions

www.voestalpine.com/railway-systems
ELASTIC RAIL FASTENING

Description
The proven plate superstructure with rail clamps ensures a continuous and secure fastening on the sleepers in the ballast track. The turnout parts and rails can be mounted to the plates with or without elastic intermediate plates. Due to the defined installation position, the full tensioning force of the rail clamps can be achieved even with different rail profiles and varying intermediate plate thicknesses. A malleable deformation of the spring arms is not possible.

Material
» plate: Structural steel / GJS ductile iron / cast steel
» rail clamp: Spring steel
» intermediate rail plates / plate pads: according to requirements
» corrosion protection: according to requirements

The rail clamp is secured to the ribbed plates by means of a clip bolt, washer and nut. To start the tensioning, both torsional spring arms are on the rail foot. By tightening the clip bolt, the middle loop is guided towards the rail foot. The optimal installation state is achieved when the middle loop still has a small distance to the rail foot.